

Wind Energy Update

RMLUI 2008 Land Use Conference Ron Lehr, Presenter Presentation by Larry Flowers National Renewable Energy Laboratory

Evolution of U.S. Commercial Wind Technology

Capacity & Cost Trends

Increased Turbine Size - R&D Advances - Manufacturing Improvements

People Want Renewable Energy!

Total Installed Wind Capacity

Capacity Additions; Second in Cumulative Capacity

U.S. Leads World in Annual Wind

International Rankings of Wind Power Capacity

Cumulative Capacity					
(end of 2007, MW)					
Germany	21,800				
United States	16,842				
Spain	13,915				
India	7,720				
China	5,000				
Denmark	3,132				
France	2,624				
Rest of World	19,488				
Total	90,521				

Incremental Capacity (2007, MW)					
United States	5,144				
China	2,406				
Spain	2,300				
India	1,450				
Germany	1,178				
France	1,155				
Portugal	494				
Rest of World	5,248				
Total	19,375				

Installed Wind Capacities ('99 – Dec '07*)

*Preliminary data

Drivers for Wind Power

- Declining Wind Costs
- Fuel Price Uncertainty
- Federal and State Policies
- Economic Development
- Public Support
- Green Power
- Energy Security
- Carbon Risk

Wind Cost of Energy

Natural Gas – Historic Prices

External Costs of Power Stations [Euro-Cent / kWh] 19 Euro/t CO2, Nitrates = 0.5 PM10, YOLL_{chronic} = 50.000 Euro

Renewables Portfolio Standards

Wind Energy Investors

Economic Development Impacts

- Land Lease Payments: 2-3% of gross revenue \$2500-4000/MW/year
- Local property tax revenue: ranges widely -\$300K-1700K/yr per 100MW
- 100-200 jobs/100MW during construction
- 6-10 permanent O&M **jobs** per 100 MW
- Local construction and service industry: concrete, towers usually done locally

Windy Rural Areas Need Economic Development

Source: 2000 Census compared with 1970 Census.

Case Study: Texas

Utilities and wind companies invested \$1B in 2001 to build 912 MW of new wind power, resulting in:

- 2,500 quality jobs with a payroll of \$75M
- \$13.3M in tax revenues for schools and counties
- \$2.5M in 2002 royalty income to landowners
- Another 2,900 indirect jobs as a result of the multiplier effect
- \$4.6M increase in Pecos County property tax revenue in 2002

Case Study: Minnesota

107-MW Minnesota wind project

- \$500,000/yr in lease payments to farmers
- \$611,000 in property taxes in 2000 = 13% of total county taxes
- 31 long-term local jobs and \$909,000 in income from O&M (includes multiplier effect)

Case Study: Iowa

240-MW lowa wind project

- \$640,000/yr in lease payments to farmers (\$2,000/turbine/yr)
- \$2M/yr in property taxes
- \$5.5M/yr in O&M income
- 40 long-term O&M jobs
- 200 short-term construction jobs
- Doesn't include multiplier effect

Case Study: New Mexico

- 204-MW wind project built in 2003 in DeBaca and Quay counties for PNM
- 150 construction jobs
- 12 permanent jobs and \$550,000/yr in salaries for operation and maintenance
- \$550,000/year in lease payments to landowners
- \$450,000/year in payments in lieu of taxes to county and school districts
- Over \$40M in economic benefits for area over 25 years

Photo: PNM

Case Study: Hyde County, South Dakota

40-MW wind project in South Dakota creates \$400,000 - \$450,000/yr for Hyde County, including:

- More than \$100,000/yr in annual lease payments to farmers (\$3,000 - \$4,000/turbine/yr)
- \$250,000/yr in property taxes (25% of Highmore's education budget)
- 75 -100 construction jobs for 6 months
- 5 permanent O&M jobs
- Sales taxes up more than 40%
- Doesn't include multiplier effect

Case Study: Prowers County, Colorado

- 162-MW Colorado Green Wind Farm (108 turbines)
- \$200M+ investment
- 400 construction workers
- 14-20 full-time jobs
- Land lease payments \$3000-\$6000 per turbine
- Prowers County 2002 assessed value \$94M; 2004 assessed value +33% (+\$32M)
- Local district will receive 12 mil tax reduction
- Piggyback model

"Converting the wind into a much-needed commodity while providing good jobs, the Colorado Green Wind Farm is a boost to our local economy and tax base."

John Stulp, county commissioner, Prowers County, Colorado

Local Ownership Models

- Minnesota farmer cooperative (Minwind)
- FLIP structure
- Farmer-owned small wind
- Farmer-owned commercial-scale

© L. Kennedy

Environmental Benefits

- No SOx or NOx
- No particulates
- No mercury
- No CO2
- No water

Sustainable Withdrawal Of Freshwater Is National Issue

Change in Annual (PCPN-Potential Evapotranspiration) 2035-2060

Source: NOAA

Key Issues for Wind Power

- Policy Uncertainty
- Siting and Permitting: avian, noise, visual, federal land, radar
- Transmission: FERC rules, access, new lines

- Operational impacts: intermittency, ancillary services, allocation of costs
- Accounting for non-monetary value: green power, no fuel price or carbon risk, reduced emissions, reduced water use

Integrating Wind into Power Systems

Table 6. Key Results from Major Wind Integration Studies Completed 2003-2006

Date	Study	Wind Capacity Penetration	Cost (\$/MWh)				
			Regulation	Load Following	Unit Commitment	Gas Supply	TOTAL
2003	Xcel-UWIG	3.5%	0	0.41	1.44	na	1.85
2003	We Energies	4%	1.12	0.09	0.69	na	1.90
2003	We Energies	29%	1.02	0.15	1.75	na	2.92
2004	Xcel-MNDOC	15%	0.23	na	4.37	na	4.60
2005	PacifiCorp	20%	0	1.6	3	na	4.60
2006	CA RPS (multi-year)	4%	0.45*	trace	na	na	0.45
2006	Xcel-PSCo	10%	0.2	na	2.26	1.26	3.72
2006	Xcel-PSCo	15%	0.2	na	3.32	1.45	4.97
2006	MN-MISO 20%	31%	na	na	na	na	4.41**

* 3-year average ** highest over 3-year evaluation period

Source: National Renewable Energy Laboratory.

2030 - Between PCA Transfers and In-PCA Use for Wind (All Classes)

Total Between PCA Transfer >= 100 MW (all power classes, onshore and offshore)

Arrows originate and terminate at the centroid of the PCA for visualization purposes; they do not represent physical locations of transmission lines.

Ron Lehr

Wind Powering America

www.windpoweringamerica.gov