Sustainability Through Solar Access:

Boulder's Practical Experience

Boulder's Energy Tradition

- Solar Access Regs since 1984
- "Green Points" for building construction
 - Conservation and environ impact

- Energy conservation variance
 - Setback reduction for systems/conservation

Current Efforts

- Objective: 24% lower GHG by 2024
- Climate Action Plan
 - Energy efficiency: All "green" public bldgs
 - Renewable fuels 7% of electricity now
 - Reduce VMT

Why Solar Access Regs?

Protect solar potential

Improve livability

- Encourage alternate energy source
 - Passive
 - Active, hot water
 - Photo-voltaic (PV)

What Approach?

- Subdivision standards
 - Street and lot orientation to max solar exposure
- Zone / bulk standards
 - Lot sizes, setbacks, height to preserve solar
- Building design standards
 - Accept solar
 - Don't shade neighbors

Subdivision +/-

- + Easy for greenfield sites
- + Can maximize solar potential

Subdvision +/-

- Urban design of wide lots / buildings
- Street tree shading on north street side

- + Bulk standards simple
- + Flexible, adjust to terrain

Zone / Bulk +/-

- Many zones if much topography
- Existing buildings roof access at best

Building Design +/-

- + Simple if envelope not pushed
- + Design flexibility

Building Design +/-

- Full envelope or topo is complex
- Neighbor disputes

Boulder's Approach

Adopted in 1984

Reduce reliance on fossil fuels

- Regulates structures / vegetation:
 - Subdivision design
 - Building design
 - NOT zone / bulk standards

Boulder's Approach

- Subdivision standards
 - Streets oriented to max solar access
 - Lots oriented to max solar potential
- Vary thru PUD
 - Few greenfield subs
 - Mostly infill

Boulder's Approach

- Building Design
 - South wall next to heated space
 - Wall and / or roof access 10 am - 2 pm
 - A roof surface:
 - < 30 degrees true east west
 - Flat or south slope
 - Support 75 s.f. collector per unit

Roof Protection 8 am – n.a.

Roof Protection 9 am – n.a.

Roof Protection 10 am - yes

Roof Protection 11 am – yes

Roof Protection Noon - yes

Roof Protection 1 pm - yes

Roof Protection 2 pm - yes

Roof Protection 3 pm – n.a.

Roof Protection 4 pm – n.a.

Building permit analysis:

- Protect adjacent building envelopes
- South roofs, walls, yards low density
- Roofs only medium / high density
- "Solar fence" concept

SOLAR SHADOW KEY

	BULDING	MAINTER	HT ABY GRADE	100 AM SHADOU	12 NOON SHADOW	2 FPM SHADOW
	A	19.4	19.6	19.8	15.2	19.8
	5	26.2	26.4	32.4	28.8	32.4
ı	c	19.4	20.5	22.1	פברו	22.1
- 1	D	22.4'	23.5'	29.9	23.00	29.9
- [E	19.41	20.9	200	17.8	200
	F	25.0	26.5	32.1	29.0	32.7
- 1	G	24.9"	27.00	39.1	300	39.7
١	H	19.4'	21.6	21.1	1920	27.7
ĺ	1	19.4'	2202'	18.5	16.4	18.5
- 1	J	19.4'	206	19.4	17.2	19.4
- 1	K	31.8	33 <i>.0</i> °	55.6	4.9	55.6
- 1	L	26.6	29.2	45.2	34,4	45.2
- 1	M	19.4"	20	26.5	220	26.5
	N.	19.4'	220	26.5	20	26.5

Shadow Analysis

Can't shade more than "Solar Fence"

Shadow Analysis

Other Features...

- Trees <u>can</u> be considered in analysis
- Solar "exceptions" if minimal impact
- Solar Access Permits record restrictions on adjacent lot to protect an existing solar system
 - Can limit neighbor's structures or trees

Issues

- Off-site analysis re: topo / lot configuration
 - Complex roof plans = complex analysis
 - Bulk plane over lot would be easier
- Neighbors use to prevent McMansions
 - Contentious
 - Time consuming
- Doesn't require solar use
 - Solar installation market driven

Summary – Solar Reg Options

- Multiple techniques available
 - Subdivision
 - Bulk standards (bulk plane)
 - Building design

Solar system use - market or regs