### **Manage What You Measure**

Measuring a Region-Wide, Municipal Landscape Water Conservation Program

Rocky Mountain Land Use Institute
Conference
March 8, 2013

#### Center for ReSource Conservation

Dan Stellar, Water Division Director
Ashley Luscan and Morgan Zeliff, Research Associates

### **CRC** Overview

#### **CRC Mission**

 To empower our community to conserve natural resources.

#### **CRC History**

 35 year old nonprofit organization, founded by concerned citizens in 1976

#### **CRC Program Areas**

- Water
- Energy
- Materials







### **CRC** Water Overview

- Programs help residents conserve water and help water providers meet conservation goals
- Business model:
  - Contract with water providers to provide conservation programs for their residents
  - Programs are generally provided free to end-users
- We are the leading implementer of water conservation programs in Colorado
  - Served over 30,000 residents. In 2012, we had over 4,000 customer interactions with residents in 28 communities.







### **Program Information**

- Slow the Flow
  - Outdoor water audit service
  - Offered since 2004
  - 2,000 residential audits offered in 2012
  - 10,000+ audits offered to date, with 26 water providers
  - Service includes customized watering schedule and identification and prioritization of system repairs

# Data and Program Measurement

- Historically provided extensive data to our water provider partners
  - Customer satisfaction and feedback
  - Survey data about conservation features
  - Data about customer water use habits
  - Results of sprinkler efficiency tests
  - Basic customer information
  - Landscape information
- WHAT'S MISSING???

### The \$64,000 Question

 How much water is being saved as a result of these programs?



# Barriers – Why only the Cadillac?

- Consistent with most of the water conservation field
  - Not data driven
- Lack of technical sophistication
- Lack of demand from partners
- Answer might not be what we wanted
- Partners and the public might not understand the answer
- Outdoor water conservation is difficult to measure



### **Current Situation**

- Major emphasis on impact analysis
- Focus: Answer the question of how much water is saved as a result of CRC's outdoor audit service
  - Provide answers on numerous scales:
    - Individual participant
    - Individual participant average
    - Community level per year
    - Community level in aggregate
    - Program level per year
    - Program level in aggregate

### Impact Study

- Engaged in major study to calculate empirical, weather-normalized savings in volumetric terms
- 1600 customer records from 9 water providers
  - 5 years of data per customer
- 10 years of climate data from 4 weather stations
- Work to date
  - Completed pilot study
  - Reviewed methodology with partners
  - Completed 2<sup>nd</sup> round study
  - Produced impact reports

### Impact Analysis Methodology

- Water savings = Projected water use actual water use
- Projected water use: How much water the participant would have used, had they not participated in the audit
  - Based on historical consumption records as compared to climate conditions
- Actual water use: Directly from water usage records

### Impact Analysis Calculations

**CRC Method:** An Example

#### **Pre-Audit**

| ID    | Outdoor<br>Use (gal)<br>Yr 1 |       | Water<br>needed<br>to meet<br>ETR (gal)<br>Yr 1 | Water<br>over/under<br>ETR (gal)<br>Yr 1 | AR<br>Yr 1 |
|-------|------------------------------|-------|-------------------------------------------------|------------------------------------------|------------|
| User1 | 68,143                       | 19.63 | 60,325                                          | 7,818                                    | 113%       |
|       |                              |       |                                                 |                                          | 0.07       |
| User2 | 110,429                      | 19.63 | 137,811                                         | -27,382                                  | 80%        |

<--Over-watering pre-audit

<--Under-watering pre-audi

| ID    | Outdoor<br>Use (gal)<br>Yr 2 | ETR (in)<br>Yr 2 | Water<br>needed<br>to meet<br>ETR (gal)<br>Yr 2 | Water<br>over/unde<br>r ETR (gal)<br>Yr 2 | AR<br>Yr 2 |
|-------|------------------------------|------------------|-------------------------------------------------|-------------------------------------------|------------|
| User1 | 72,033                       | 20.11            | 62,457                                          | 9,576                                     | 115%       |
|       |                              |                  |                                                 |                                           |            |
| User2 | 112,214                      | 20.11            | 141,225                                         | -29,011                                   | 79%        |

**Average Pre-Audit AR** 

**User 1 = 114%** 

**User 2 = 80%** 

### Impact Analysis Calculations

**CRC Method: An Example** 

#### **Post-Audit**

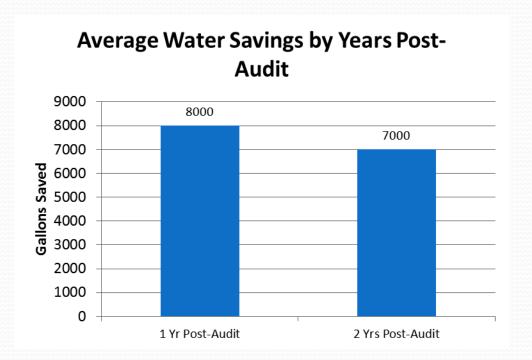
| ID    | Outdoor<br>Use (gal)<br>Yr 4 | ETR (in)<br>Yr 4 | Water<br>needed<br>to meet<br>ETR (gal)<br>Yr 4 | Water<br>over/unde<br>r ETR (gal)<br>Yr 4 | AR<br>Yr 4 |
|-------|------------------------------|------------------|-------------------------------------------------|-------------------------------------------|------------|
| Userı | 65,322                       | 19.34            | 59,876                                          | 5,446                                     | 109%       |
|       |                              |                  |                                                 |                                           |            |
| User2 | 115,021                      | 19.34            | 135,421                                         | -20,400                                   | 85%        |

<--Reduced water use post-audit

<--Increased water use post-audit

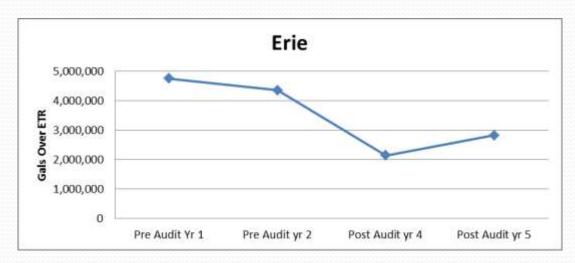
### Impact Analysis Calculations

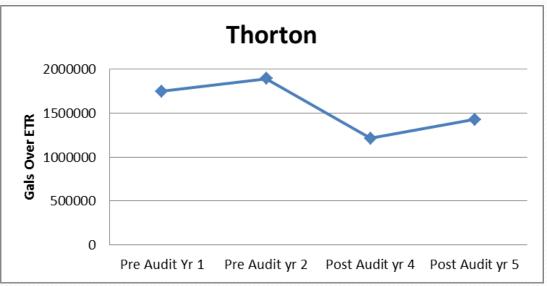
**CRC Method: An Example** 


| ID    | Pre-<br>Audit<br>AR | Yr 4<br>AR | <b>Projected Use</b><br>Yr 4 | <b>Savings</b><br>Yr 4            |
|-------|---------------------|------------|------------------------------|-----------------------------------|
| Userı | 114%                | 109%       | 59,876*114% = 68,259         | 68,259 - 65,322 = <b>2,937</b>    |
|       |                     |            |                              |                                   |
| User2 | 8o%                 | 85%        | 135,421*80% = 108,337        | 108,337 - 115,021 = <b>-6,684</b> |

### Major Impact Findings

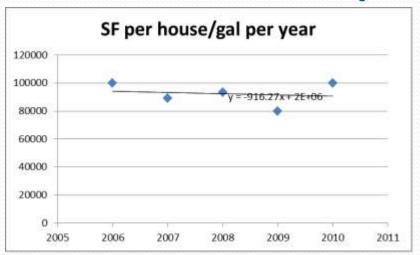
- Statistically significant savings between pre- and postaudit water use
- Savings last for at least two years post-audit
- Average savings of 7,000 gallons per year, per audit customer
- Average 14% decrease in percent above ET
- Total STF savings (2004 present):
   142,000,000 gallons

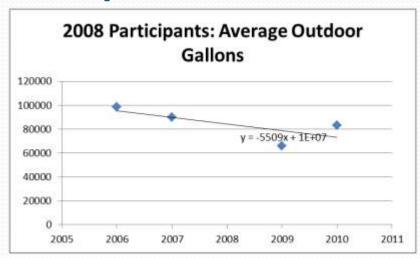

### Water Savings

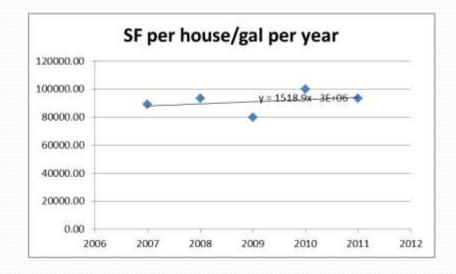

| Water Savings (Gal) |          |  |  |
|---------------------|----------|--|--|
| Mean                | 7,247    |  |  |
| Standard            | 22.265   |  |  |
| Deviation           | 33,265   |  |  |
| Median              | 5,634    |  |  |
| Minimum             | -223,060 |  |  |
| Maximum             | 239,336  |  |  |

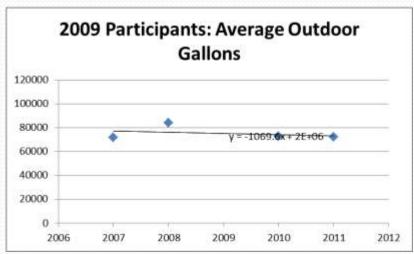


### **Additional Results**


\*City by city breakdowns show favorable trends





### Results -

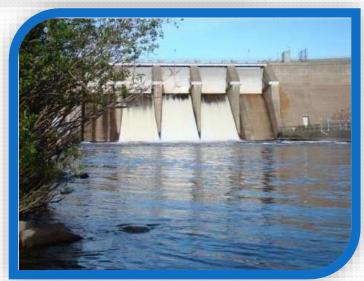
### **Control Group Comparison**










### Results – Cost Analysis

• STF audit fee: ~\$100 per audit

• \$4,220 per AF of "saved" water

New supply = \$12,000 -\$30,000 per AF





### Impact Study Uses

- Meets needs of our partners!
- Promotional
  - Partner communication
  - New partner development
  - Fundraising and grantwriting
- Programmatic
  - Structural changes to the program to achieve greater savings
- New Business Area
  - CRC can conduct this type of analysis for other entities.

### Impact Study Challenges

- Large standard deviation requires looking at more than mean
- Mean is not predicative of what will happen to any individual homeowner
- Other factors are also relevant
  - Participation in other water programs, education, rate changes
- Data represents a major challenge

### **Outstanding Questions**

- What are other metrics that should be used to measure water conservation programs?
- Who should measure water conservation programs?
- Can "average" savings be meaningfully presented?
- Can water conservation programs, if measured appropriately and rigorously, represent a viable alternative to generating new sources of supply?

## Thank you!







