

Varying Influences of the Built Environment on Household Travel in Fifteen Diverse Regions of the United states

Ewing, R., G. Tian, J.P. Goates, M. Zhang, M. Greenwald, Lane Council of Governments, A. Joyce, and J. Kircher

Presented by:

Reid Ewing

Professor of City and Metropolitan Planning University of Utah <u>ewing@arch.utah.edu</u>

Department of City & Metropolitan Planning, University of Utah

Article

Varying influences of the built environment on household travel in 15 diverse regions of the United States

Reid Ewing, Guang Tian and JP Goates University of Utah, USA

Ming Zhang University of Texas at Austin, USA

Michael J Greenwald Oregon Health Authority, USA

Alex Joyce Fregonese Associates Inc., USA

John Kircher University of Utah, USA

William Greene New York University, USA **Urban** Studies

Urban Studies 1–19 © Urban Studies Journal Limited 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0042098014560991 usj.sagepub.com **SAGE**

THE UNIVERSITY OF UTAH

Outline

- Introduction
- Literature review
- Methods
- Data
- Variables
- Statistical analysis

Results

- Discussion
- Computations
- Applications

Introduction

Urban sprawl

Highway congestion

Automobile use

Oil dependence

Physical inactivity and obesity

Climate change

Department of City & Metropolitan Planning, University of Utah

But how much effect can the built environment have on automobile use, walking, biking, and transit use?

Department of City & Metropolitan Planning, University of Utah

Literature

- More than 200 Empirical Studies
- Collectively Relate All Aspects of Travel to All Aspects of Built Environment
- Vast Majority Control for Sociodemographic Differences
- Vast Majority Use Statistical Methods
- A Few Come Close to the Normative Model

Study Areas

This paper addresses the external validity issue in a different manner, by pooling household travel and built environment data from <u>15 diverse U.S. regions</u>.

Department of City & Metropolitan Planning, University of Utah

Households and trips

	Survey Date	Surveyed Households	Surveyed Trips
Atlanta	2011	9,575	93,681
Austin	2005	1,450	14,249
Boston	2011	7,826	86,915
Denver	2010	5,551	67,764
Detroit	2005	939	14,690
Eugene	2011	1,679	16,563
Houston	2008	5,276	59,552
Kansas City	2004	3,022	31,779
Minneapolis-St. Paul	2010	8,234	79,236
Portland	2011	4,513	47,551
Provo-Orem	2012	1,464	19,255
Sacramento	2000	3,520	33,519
Salt Lake City	2012	3,491	44,576
San Antonio	2007	1,563	14,952
Seattle	2006	3,908	40,450
Total	•	62,011	664,732

Department of City & Metropolitan Planning, University of Utah

Dependent Variables

variable	description	N	Mean	S.D.
dependent va	ariables	-		-
anyvmt	any household VMT (1=yes, 0=no)	62,011	0.94	0.24
lnvmt	natural log of household VMT (for households with any VMT)	58,011	3.07	1.03
autotrips	household auto trips	62,011	8.4	7.11
anywalk	any household walk trips (1=yes, 0=no)	62,011	0.24	0.43
walktrips	household walk trips (for households with any walk trips)	14,672	4.08	3.51
anybike	any household walk trips (1=yes, 0=no)	62,011	0.04	0.2
biketrips	household bike trips (for households with any bike trips)	2,495	3.24	2.63
anytransit	any household walk trips (1=yes, 0=no)	62,011	0.11	0.31
transittrips	household transit trips (for households with any transit trips)	6,719	2.97	2.22

7D variables consistently defined

- Density
- Diversity
- Design
- Destination Accessibility
- Distance to Transit
- •Development Scale
- Demographics

Individual Level Variables

- hhsize Number of members of the household
- hhworkers Number of workers in the household
- hhincome Household income in 2012 dollars

тне	
UNIVERSITY	
of UTAH	/

D Variable	Measurement
Density	Density is always measured as the variable of interest per unit of area. The area can be
	or building floor area. Population and employment are sometimes summed to compute
	an overall activity density per areal unit.
Diversity	Diversity measures pertain to the number of different land uses in a given area and the degree to which they are balanced in land area, floor area, or employment. Entropy measures of diversity, wherein low values indicate single-use environments and higher values more varied land uses, are widely used in travel studies. Jobs-to-housing or jobs-to-population ratios are less frequently used.
Design	Design measures include average block size, proportion of four-way intersections, and number of intersections per square mile. Design is also occasionally measured as sidewalk coverage (share of block faces with sidewalks); average building setbacks; average street widths; or numbers of pedestrian crossings, street trees, or other physical variables that differentiate pedestrian-oriented environments from auto-oriented ones.
Destination accessibility	Destination accessibility measures ease of access to trip attractions. It may be regional or local (Handy 1993). In some studies, regional accessibility is simply distance to the central business district. In others, it is the number of jobs or other attractions reachable within a given travel time, which tends to be highest at central locations and lowest at peripheral ones. The gravity model of trip attraction measures destination accessibility. Local accessibility is a different animal. Handy (1993) defines local accessibility as distance from home to the closest store.
Distance to	Distance to transit is usually measured as an average of the shortest street routes from
transit	the residences or workplaces to the nearest rail station or bus stop. Alternatively, it may
	be measured as transit route density, distance between transit stops, or the number of
•	stations per unit area. In this literature, frequency and quality of transit service are
	overlooked.

Department of City & Metropolitan Planning, University of Utah

Buffer Variables

UNIVERSITY

OF UTAH

- ACTDEN Population + employment density per square mile
 - JOBPOP Balance of jobs to population within the buffer
 - LANDMIX Entropy index that captures the variety of land uses based on acreage within the buffer
- INTDEN Number of intersections within the buffer per square mile of gross area
- PCT4W Percentage of 4-way intersections with the buffer
- EMP10A, EMP20A, EMP30A Total employment within 10, 20, and 30 minutes by automobile
- EMP30T Total employment within 30 minutes by transit
- STOPDEN Number of bus stops within the buffer per square mile of gross area
- RAIL Rail station located within the MXD (1 = yes, 0=no)

Statistical analysis

Multilevel modeling (MLM / HLM) partitions variance between the household/neighborhood level (Level 1) and the region level (Level 2) and then seeks to explain the variance at each level in terms of D variables.

Two-stage "hurdle" model

- The stage 1 categorizes households as either generating VMT, walk, bike, transit trips or not.
- The stage 2 model estimates the amount of VMT and number of auto, walk, bike, and transit trips generated for households with any VMT, auto, walk, bike, and transit trips.

	Outcome variable is anyvmt					
	coefficient	standard error	t-ratio	p-value		
Constant	3.202	0.316	10.108	<0.001		
hhsize	0.385	0.052	7.347	<0.001		
hhworkers	0.277	0.064	4.297	<0.001		
hhincome						
base	0.0426	0.0097	4.349	0.001		
sprawl_index10	-0.000226	0.000083	-2.731	0.018		
emp10a	-0.0193	0.0043	-4.441	<0.001		
entropyqmi	-0.891	0.082	-10.776	<0.001		
stopdenqmi	-0.0033	0.0007	-4.444	<0.001		
actden1mi	-0.0144	0.0028	-5.091	<0.001		
intden1mi	-0.0027	0.0012	-2.168	0.03		
int4w1mi	-0.0114	0.0015	-7.297	<0.001		
regpop	-0.000253	0.000088	-2.866	0.014		
Pseudo-R2: 0.74						

Department of City & Metropolitan Planning, University of Utah

Results

	Outcome variable is Invmt				
	coefficient	standard error	t-ratio	p-value	
constant	2.846	0.063	44.619	<0.001	
hhsize	0.168	0.008	20.51	<0.001	
hhworkers	0.189	0.006	28.429	<0.001	
hhincome	0.0026	0.0003	8.654	<0.001	
emp10a	-0.0065	0.0018	-3.548	0.001	
emp30t	-0.0034	0.0004	-7.951	<0.001	
jobpopqmi	-0.044	0.018	-2.405	0.016	
actden1mi	-0.0064	0.0028	-2.244	0.041	
entropy1mi	-0.219	0.036	-6.034	<0.001	
intden1mi	-0.0018	0.0002	-8.382	<0.001	
int4w1mi	-0.0024	0.0005	-4.298	<0.001	
Pseudo-R2: 0).22				

	Outcome variable is autotrips				
	coefficient	standard error	t-ratio	p-value	
constant	1.289	0.046	27.871	<0.001	
hhsize	0.305	0.009	33.009	<0.001	
hhworkers	0.007	0.004	1.700	0.086	
hhincome	0.0015	0.0002	6.812	<0.001	
emp20a	0.00104	0.00028	3.753	<0.001	
entropyqmi	-0.065	0.014	-4.495	<0.001	
actdenhmi	-0.0043	0.0008	-4.934	<0.001	
stopdenhmi	0.0007	0.00016	-4.414	<0.001	
jobpop1mi	0.022	0.012	1.809	0.07	
Pseudo-R2: 0	Pseudo-R2: 0.52				

Department of City & Metropolitan Planning, University of Utah

Results

	Outcome variable is anywalk					
	coefficient	standard error	t-ratio	p-value		
Constant	-4.957	0.273	-18.113	<0.001		
hhsize	0.419	0.023	17.524	<0.001		
emp30t	0.009	0.002	4.063	<0.001		
entropyqmi	0.497	0.066	7.449	<0.001		
intdenhmi	0.0019	0.00033	5.902	<0.001		
stopdenhmi	0.0048	0.00107	4.511	<0.001		
actden1mi	0.017	0.0029	5.85	<0.001		
int4w1mi	0.0088	0.002	4.404	0.001		
sprawl_index10	0.0146	0.0022	6.491	<0.001		
Pseudo-R2: 0.0	Pseudo-R2: 0.001					

Department of City & Metropolitan Planning, University of Utah

Results

	Outcome variable is walktrips				
	coefficient	standard error	t-ratio	p-value	
Constant	0.325	0.178	1.828	0.09	
hhsize	0.164	0.0079	20.77	<0.001	
hhworkers	-0.06	0.0099	-6.057	<0.001	
hhincome	-0.0009	0.0002	-4.521	<0.001	
emp30t	0.0031	0.0014	2.199	0.045	
actdenqmi	0.00095	0.00054	1.765	0.077	
int4wqmi	0.0012	0.0004	3.218	0.002	
entropyhmi	0.282	0.069	4.061	<0.001	
stopdenhmi	0.0018	0.00015	11.949	<0.001	
sprawl_index1 0	0.00328	0.0017	1.929	0.075	
Pseudo-R2: 0.22					

Results

	Outcome variable is anybike					
	coefficient	standard error	t-ratio	p-value		
Constant	-6.689	0.52	-12.861	<0.001		
hhsize	0.386	0.03	12.89	<0.001		
hhworkers	0.181	0.044	4.072	<0.001		
jobpophmi	0.362	0.102	3.552	0.001		
intden1mi	0.0032	0.0017	1.911	0.076		
int4w1mi	0.0158	0.005	3.127	0.008		
sprawl_index10	0.01	0.005	1.752	0.103		
Pseudo-R2: NA						

Results

	Outcome variable is biketrips				
	coefficient	standard error	t-ratio	p-value	
Constant	0.714	0.068	10.481	<0.001	
hhsize	0.109	0.007	14.506	<0.001	
int4w1mi	0.0041	0.0008	4.948	<0.001	
stopden1mi	0.0028	0.001	2.797	0.006	
regpop	-0.000039	0.000018	-2.202	0.046	
Pseudo-R2: 0.1	3				

	Outcome variable is anytransit					
	coefficient	standard error	t-ratio	p-value		
Constant	-4.865	0.411	-11.815	<0.001		
hhsize	0.104	0.013	7.986	<0.001		
hhworkers	0.321	0.037	8.624	<0.001		
hhincome	-0.0081	0.0019	-4.165	0.001		
emp30t	0.011	0.005	2.254	0.041		
entropyqmi	0.625	0.095	6.541	<0.001		
jobpop1mi	0.246	0.12	2.054	0.04		
int4w1mi	0.0075	0.0028	2.666	0.008		
stopden1mi	0.014	0.0028	4.874	<0.001		
sprawl_index10	0.01	0.0035	2.933	0.012		
Pseudo-R2: 0.71	Pseudo-R2: 0.71					

Department of City & Metropolitan Planning, University of Utah

Results

	Outcome variable is transittrips			
	coefficient	standard error	t-ratio	p-value
Constant	0.525	0.124	4.236	0.001
hhsize	0.092	0.02	4.538	<0.001
hhworkers	-0.018	0.008	-2.203	0.028
hhincome	-0.0027	0.0002	-13.515	<0.001
emp30t	0.0021	0.0008	2.533	0.012
stopdenqmi	0.00048	0.00011	4.345	<0.001
entropyhmi	0.188	0.053	3.512	0.001
jobpop1mi	0.187	0.086	2.182	0.029
regpop	0.000066	0.000032	2.064	0.059
Pseudo-R2: 0.17				

Discussion

Generalizing across the preceding models, four conclusions emerge with great relevance to travel modeling:

- Socioeconomic, built environment, and transit service variables all influence household travel decisions, though based on the significance levels alone, the socioeconomic influences appear strongest.
- The decision to use alternative modes is influenced by different factors than the frequency of use once the decision is made, and the use of hurdle models is therefore warranted in household travel modeling.

- All the D variables influence household travel decisions, but consistent with the meta-analysis by Ewing and Cervero (2010), the strongest influences are diversity, design, and destination accessibility, and the weakest influence is density.
- The relevant built environment for travel analysis is anywhere from ¼ to one mile or more in scale, but the largest scale seems have more predictive power than the smallest scale.

•

• •

Applications

The models developed in this study have already been incorporated into Envision Tomorrow Plus (ET+), a user-friendly, transparent, and open soure scenario planning software package.

a suite of urban and regional planning tools

Cleveland, OH

Austin, TX

Kansas City, KS

San Diego, CA

Salt Lake City, UT

•

Others ...

Department of City & Metropolitan Planning, University of Utah

The models can be used to post process outputs of conventional four-step travel demand models to accounting for density, diversity, and design effects on household travel.

- Models could also be applied to traffic impact analysis, such as adjusting ITE trip rates to reflect how greater densities and other environmental attributes would affect trip making.
- Sketch planning application

UNIVERSITY

OF UTAH

- climate action planning estimating VMT reductions in urbanized areas, and to translate these in turn into CO2 reductions.
- Assess health impacts computing increases in walking and biking through simulating changes in the D variables under future scenarios.

Norm Marshall of Smart Mobility Cleveland National Forest Foundation Transit and Density Advocate **SAN DIEGO COUNTY**

SANDAG

very highway oriented LRTP

- sprawl was inevitable 10 years independent of transportation investment
- compact development inevitable, regardless of transportation investments
- putting money into express lanes some high profile rail projects - expensive

PB Study for SANDAG

- 30 percent transit mode share goals going into downtown
- 20 to 25 percent central core 50 square miles

2012 CHTS

100.0%			
90.0%			
80.0%			
70.0%			
60.0%			
50.0%			
40.0%			
30.0%			
20.0%			
10.0%			
0.0%			
	Share of Person Trips		
Auto >= 10 miles	20.2%		
Auto <10 miles	66.3%		
Transit	4.2%		
Bike	1.5%		
Walk	7.9%		

2012 CHTS

Series 9 Forecast: Pre-Regional Comprehensive Plan

Series 13 Forecast: Current Plans

• •

25%-30% GHG reductions

•

SANDAG Forecast of VMT/person

ET+ Forecast of VMT/person

Mode Shifts with ET+

VMT per capita with ET+

www.company.com

Growth in Areas of Lower VMT

Thank you !

Department of City & Metropolitan Planning, University of Utah