Planning for Climate Change

Practical Strategies for Local Governments
Rocky Mountain Land Use Institute / March 6, 2020

Source: Utah State University
Panelists

Brian Connolly
Otten Johnson Robinson Neff + Ragonetti, P.C.

Don Elliott
Clarion Associates

Molly Mowery
Community Wildfire Planning Center
Climate Change!
Key Assumptions

• Scientists predict that the Western United States will get hotter and drier as a result of climate change, and storm events will become more severe

• Climate science and policy are and will continue to be highly politicized at the state and federal levels

• Large-scale interventions are necessary to avoid catastrophic damage from climate change

• Land use patterns are a primary determinant of carbon emissions

• Local governments have an important role to play in land use regulation and climate adaptation policymaking
Planning for Climate Change: Substance

• Three predictable problems will face the Western U.S. as a consequence of climate change:
 • Flooding
 • Wildfire
 • Urban heat island
Planning for Climate Change: Process

• Whether framed as climate-related policies, pro-climate planning and regulation benefit everyone through:
 • Increased public health
 • Economic sustainability
 • Good design

• Climate mitigation measures have costs and benefits
 • As with every planning effort, there are winners and losers
 • Collective goal should be to maximize winning and minimizing losing
 • There are reasonable ideas, and there are impractical ideas…
The practical realities of climate change in the Western U.S.

Increased River and Stream Flooding Due to Increased Storm Activity
Increased flooding

Rainstorm forecasts
• Increased frequency
• Increased intensity
• Potential increase in flooded areas
• Reduced predictability
More human impact than we thought

- Estimated at Risk
- 13 million in 100 year FEMA’s mapped floodplains
- A new study by the Yale School of Environmental and Forestry Studies estimated that real number is 41 million
- New Mexico could experience fivefold increase in population in flood prone areas by 2100

“Producing maps the FEMA way essentially misses a lot of flood hazard”
“One of the major problems is that FEMA’s methods “tend to ignore smaller streams,” which often run through heavily populated areas.”

Oliver E. J. Wing, doctoral candidate at the University of Bristol and lead author of the new Yale study

Increased flooding

- Huge financial losses from Superstorm Sandy (LA) and Hurricane Katrina (LA) resulted in major new studies and recommendations
- Some of which are relevant to stream/river (rather than shoreline) flooding
Practical Responses

- Increasing required elevation above Base Flood Elevation (BFE)

Under the Flood Insurance Reform Act of 2012, you could save more than $90,000 over 10 years if you build 3 feet above Base Flood Elevation.

- Premium at 4 feet below Base Flood Elevation:
 - $9,500/year
 - $95,000/10 years

- Premium at Base Flood Elevation:
 - $1,410/year
 - $14,100/10 years

- Premium at 3 feet above Base Flood Elevation:
 - $427/year
 - $4,270/10 years

www.fema.gov
Practical Responses

• Permeable Ground Floor Design
 • Requiring that all habitable areas – rather than the whole house – be elevated
 • And/or that the ground floor be designed to allow water to flow through with minimal damage
Practical Responses

• Revised Setbacks
 • Adjust required primary building setbacks to be measured from FEMA floodplain boundaries rather than property lines

 • Allow automatic adjustment of side and rear lot lines to allow homes to be built on the same lot – but further from flood risk
Practical Responses

• Construction Size Limits

 • Reduce maximum size of allowed structures near flood risk areas to reduce maximum occupancy (and perhaps frequency of occupancy)
Practical Responses

- Clustering and development rights pooling
 - Where property size would allow multiple single-family lots – require clustering of smaller lots away from flood risks.
 - Allow lots closer to flood risk to transfer building potential (units or floor area) to adjacent lots located further from flood risks.
Practical Responses

- Flood accommodating open space designs
 - Revise open space requirements to allow some portion of the area to serve as temporary floodwater accommodation areas
 - The very small number of days when the open space will not be usable due to floodwaters is a small price to pay for more efficient and affordable use of the remaining land.
Practical Responses

- FEMA Community Rating System (CRS) can reduce community flood insurance by:
 - Not approving expansions of buildings in the floodplain by more than 25% -- even if the addition would be raised above base flood elevation
 - Requiring waterproof sanitary sewer systems
 - Requiring that access roads must be elevated above the 1% flood
 - Giving builders credit for required open space located in the floodplains
 - Many others
Practical Responses

• Focus on Political Realities
 • Emphasize the dollar costs when similar sized communities have had to add temporary staff, repair roads and infrastructure, and operate shelters when a flood occurred – because the burden of new regulations on property owners need to be balanced against the costs imposed on the entire community when a flood occurs.
 • Trying to prevent property owners from building anything on their properties is probably a non-starter (read the Lucas case).
 • Emphasize what can be built or occupied on the stream and riverfront properties -- there are lots of cases where zoning prevents property owners from building exactly what they want – and this is one of them.
 • A cabin is almost always a “reasonable economic use of properties”
Adapting to Climate Change through Wildfire Planning Tools

Molly Mowery, AICP
Community Wildfire Planning Center

Rocky Mountain Land Use Institute Conference
March 2020
Wildfire Planning Tools

- FIRE CODE
 - Maintenance Agreements
 - Site Design Standards
 - Conservation Easement

- Comprehensive Plan
- Site-Specific Assessment

- Nuisance Ordinance
- Landscaping Requirements

- SUBDIVISION REGULATIONS
 - Building Code
 - Wildfire Overlay
 - Zone District

- Hazard Mitigation Plan
 - Open Space Plan
 - Land Acquisition
 - Wildland-Urban Interface Regulations

- USE-SPECIFIC STANDARDS
 - Community Wildfire Protection Plan
 - Future Land Use Map
 - Development Fees

- Post-Disaster Building Moratorium

Planning for Climate Change / Rocky Mountain Land Use Institute / March 6, 2020
1. Comprehensive Plan

Foundational starting point to guide future policies and regulations, encourages alignment with other climate and hazard-related objectives.
2. Subdivision Regulations

Broad opportunity to influence development through application requirements for fuel management, lot siting, phasing, access, water supply, and more.
3. Wildland-Urban Interface (WUI) Code

Model set of standards for construction materials and building requirements, access, water supply, vegetation management, and more.
4. Vegetation Management

Addresses appropriate placement and type of vegetation in wildfire-prone areas, includes plant selection lists.
5. Setbacks / Hillside Protection Ordinance

Increases setbacks from steep slopes and can be combined with other hillside and hazard protection objectives.
6. Site Assessments

Offers site-specific assessments through voluntary or regulatory pathways, can be combined with incentives for property owners.
7. Enforcement

Ensures wildfire risk reduction occurs on building, site, and other features; can be enforced through nuisance provisions, weed/hazard abatement programs, and others.
Strategies

• Align with other planning objectives
• Engage, educate, collaborate, collaborate, collaborate….
• Show effective, science-based approach
• Create financial incentives
• Capitalize on recent events
Lessons

- Education and outreach is essential but not everything
- Ensure partnerships with fire department
- Expect incremental change
- Plan for election cycles, staff turnover
Contact / Resources

Molly Mowery, AICP
Executive Director
Community Wildfire Planning Center
303-358-9589
molly@communitywildfire.org
Addressing Urban Heat Island: The Denver Green Roofs Story
Urban Heat Island

Typical Heat Island Temperature Differences Between Urban and Rural Areas

Source: EPA
Urban Heat Island: What’s the Problem?

- Increased energy consumption
- Elevated air pollutant emissions
- Human comfort and health issues
- Water quality impacts

Source: EPA
What is a Green Roof?

Source: American Hydrotech, Inc.
Green Roof Impacts on Urban Heat Island

• Traditional roofing materials (asphalt, rubber, etc.) absorb heat

• Green roofs use a combination of plant materials that reduce heat absorption

• Benefits:
 • Reduced energy demand
 • Reduced air pollution
 • Stormwater management
 • Habitat
 • Aesthetics

Source: Architecture & Design
So What’s the Problem?

ADDITIONAL WATER DEMAND

- Additional potable demand ranges from 576 Acre Feet – 1836 Acre Feet

<table>
<thead>
<tr>
<th></th>
<th>Building sqft (existing 2014)</th>
<th>New Water Demand AF</th>
<th>Building sqft 2014-2045</th>
<th>Future Water Demand AF</th>
<th>Est. Building sqft 2050</th>
<th>2045 Green Roof Water Demand AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>23,841,794</td>
<td>258</td>
<td>13,983,842</td>
<td>151</td>
<td>37,825,635</td>
<td>409</td>
</tr>
<tr>
<td>Industrial</td>
<td>2,275,023</td>
<td>25</td>
<td>1,334,361</td>
<td>14</td>
<td>3,609,384</td>
<td>39</td>
</tr>
<tr>
<td>Residential</td>
<td>7,511,113</td>
<td>81</td>
<td>4,405,466</td>
<td>48</td>
<td>11,916,579</td>
<td>129</td>
</tr>
<tr>
<td>Total</td>
<td>33,627,930</td>
<td>363</td>
<td>19,723,669</td>
<td>213</td>
<td>53,351,599</td>
<td>576</td>
</tr>
</tbody>
</table>

Source: EPA
Cost-Benefit Analysis

Source: U.S. General Services Administration
Cost-Benefit Analysis

Source: U.S. General Services Administration
Other Efforts at Green Roof Requirements

Citywide

Better Roofs
Project Status: Completed

Effective January 1st, 2017, San Francisco became the first U.S. city to mandate solar and living roofs on most new construction. With the passage of this legislation, between 15% and 30% of roof space on most new construction projects will incorporate solar, living roofs, or a combination of both.

About Timeline Case Studies Cost Benefit Analysis Supporting Info Contact

Only a small percentage of San Francisco’s rooftops are put to productive use. With up to 30% of the City’s total land area composed of rooftops, there is a huge potential for using these empty spaces to generate economic, social, and environmental benefits. Living roofs are one of a number of sustainable design approaches that take advantage of underutilized rooftop space.

The Planning Department has researched best practices, current green building processes, and best site-specific solutions for the City to make living roofs a more viable option for existing and planned buildings. The Department will continue to work with other City agencies to explore how
Initiative I-300

Source: Greenroofs.org
Initiative I-300

- "Green roof" defined as requiring a growing medium, plantings, water-filtration layer, and a drainage system
- Green roof or solar panels required on buildings of 25,000 square feet or more
- 20-60% of available roof space was required to be covered with green roof or solar
 - Roof coverage percentage increased as building size expanded
- Applied to existing buildings
- Cash-in-lieu option, starting at $25 per square foot of exempted roof space
Initiative I-300

Initiated Ordinance 300

<table>
<thead>
<tr>
<th></th>
<th>Votes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES/FOR - SI/EN FAVOR DE</td>
<td>63,256</td>
<td>53.36%</td>
</tr>
<tr>
<td>NO/AGAINST - NO/EN CONTRA DE</td>
<td>55,299</td>
<td>46.64%</td>
</tr>
</tbody>
</table>

Total Votes 118,555
Under Votes 4,004 3.27%
Over Votes 36 0.03%

Source: City and County of Denver
Denver of the Future?

Source: Intercon
Unintended Consequences

• High cost on top of high construction costs adds to housing affordability challenges, development challenges

• Increased water usage in a semi-arid climate

• Ongoing maintenance challenges for green roofs leads to enforcement concerns

• Extending lifespan of older roofs has opposite effect of encouraging newer, less heat absorbent construction practices
Modified Ordinance

• Limit “available roof space” definition
 • Exempt private terraces, amenity spaces, rooftop mechanical equipment, skylights, areas used for renewable energy devices

• Addition of “cool roof” concept
 • High solar reflectance roofing materials

Source: GAF
Modified Ordinance

- **Cool roof PLUS**
 - Green space equal to 10% of GFA of building, 60% of total roof area, or available roof space, whichever is LEAST; or
 - On-site solar panels equal to 70% of total roof area or provide 100% of estimated annual average electricity; or
 - Off-site renewable energy purchase; or
 - Decreased energy consumption of at least 12% above building code requirements; or
 - LEED Gold certification; or
 - Combination of the above

Source: EPA

Planning for Climate Change / Rocky Mountain Land Use Institute / March 6, 2020
Modified Ordinance

• Requirements for existing buildings
 • Cool roof PLUS
 • Green space equal to 2% of GFA of building, 18% of total roof area, or available roof space on building, whichever is LEAST; or
 • On-site solar panels; or
 • LEED Silver; or
 • Enrollment in energy program
 • Cash-in-lieu at $50 per square foot of total green space requirement
 • “Character-defining” roof may be exempted from green roof requirement
• Campus-wide compliance options for multi-building projects
Modified ordinance

- Green building fund
 - Acquire green space in the city
 - Improve green space in the city
 - Water quality improvements and green infrastructure
 - Urban forest protection/expansion
 - Green roof creation
 - Solar adoption
Lessons Learned

• Climate activism can start the dialogue
• Despite being outspent 12-to-1 by opponents, the initiative passed due to grassroots outreach and a compelling problem statement (or misunderstanding of the impact)
• Every good idea has unintended consequences
• Resolving a small, concrete problem is easier than tackling big collective action problems
• Need input from all sides to get buy-in and to solve for unintended consequences
Questions for Discussion

• What are some other areas of climate-friendly land use regulation where these principles apply?
• What other land use planning goals could be achieved by tackling the items on which everyone agrees?
• What is the path to implementation of regulations?
• How can we achieve greater buy-in on climate adaptation and mitigation planning?
• How do we speed up change to actually respond to the climate emergency?
• Any other examples of impractical ideas turned practical?
Questions and Answers

Brian Connolly
Otten Johnson Robinson Neff + Ragonetti, P.C.
bconnolly@ottenjohnson.com

Don Elliott
Clarion Associates
delliott@clarionassociates.com

Molly Mowery
Community Wildfire Planning Center
molly@communitywildfire.org