Public Transit

INTRODUCTION

While public transit has not been the dominate transportation mode in this country for the last seventy years, the United States once led the world in public transit use. In the early part of the 20th century, the rapid population growth of American cities provided ideal settings for introducing new transit technologies.

However, following World War I, Americans increasingly bought cars, and by 1930, one in every four households owned a car. Following World War II, the automobile became synonymous with the American way of life and essential for accessing the single family detached homes, malls and office parks of an increasingly segregated land use pattern. Levittown, Pennsylvania, was a harbinger of the suburban development pattern fostered by Euclidian zoning with its strict separation of uses, curvilinear streets and minimum lot sizes. A variety of governmental programs further encouraged and directly subsidized this type of greenfield development on the urban edge. These public policies ensured that most new development would occur away from transit lines and be almost entirely shaped by the automobile.

The near exclusive reliance on auto travel in most metro areas has produced a seventy-five percent single occupant (SOV) commute mode share, a peak hour vehicle occupancy of 1.08 people per vehicle, increased travel times and is increasing traffic congestion. The Texas Transportation Institute’s periodic report on congestion shows that the average American annually spends more than fourty-seven hours in congestion resulting in a cumulative national cost of 3.7 billion hours of travel delay and 2.3 billion gallons of wasted fuel with a total cost of more than $63 billion. At the same time, road infrastructure funding is severely lacking for both maintenance and system expansion.

Despite the long history of auto-centric planning and financial subsidies, recent trends show that public transit may be once again starting to play a significant role in American metropolitan areas. Vehicle miles of travel (VMT) leveled in 2003 and actually declined in 2006. In 2005, for the first time in nearly a century, national transit ridership increased faster than VMT. Since 1995, transit ridership is up 28.1 percent compared to a 22.5 percent increase in VMT.

A number of factors suggest that increased transit use is a more sustainable transportation option. One factor to consider is the direct relationship between SOV use and energy consumption. Over the past 20 years, the U.S. has consumed a quarter of the world’s petroleum production with the transportation sector accounting for 68 percent of U.S. consumption. Travel behavior shows that a once a person leaves home as a SOV driver, they tend to make virtually all trips during that day in the car. By contrast, a transit rider tends to be a pedestrian at one or both ends of the transit trip, and will make a majority of trips during the day as a pedestrian with the associated energy savings. On average, the typical public transit rider consumes half the oil consumed by an automobile user. This helps to curb the problem of limited oil supplies and is a clear step toward sustainability.

Because most transit riders are also pedestrians, air quality and increased health benefits are positively correlated with improved public transit use. Increased transit use is a traditional strategy to improve air quality and frequently, public transit utilizes alternative fuels. Alternatively fueled vehicles, compared to private vehicles, produce ninety-five percent less carbon monoxide, ninety-two percent fewer volatile organic compounds, forty-five percent less carbon dioxide and forty-eight percent less nitrogen oxides on average per passenger mile. Potential health benefits stem from improved air quality, increased activity levels and reduced stress. Transit users tend to walk more because the traditional urban settings that support pedestrians and transit generate about half the automobile trips of similarly sized modern-day suburbs. There are also major safety benefits associated with pedestrian and public transit traffic. In terms of fatalities per million miles of travel, all modes of transit are far safer than personal vehicles. Depending on vehicle type, public transit is twenty-six to seventy-nine times safer than auto travel, potentially resulting in an estimated 190,000 fewer deaths, injuries and accidents annually as well as $2 billion to $5 billion in safety benefits, based on 1994 data.

While often overlooked, increased transit use also contributes to sustainability by improving both personal and regional economics. A two adult “public transportation household”, defined as a household located within 0.75 miles of public transportation, with two adults and one car saves an average $6,251 every year, compared to an equivalent household with two cars and no access to public transit services. Household savings on transportation also translate into significant regional effects. In Portland, Oregon, residents of the metro area drive an average of four miles per day less than the average metro area, resulting in an estimated 2.9 billion miles of reduced vehicle travel. This translates to a direct cost savings to the region of $1.1 billion. These travel cost savings results in an estimated $800 million dollars staying within the local economy.

While the relationship between fixed guideway transit, such as light rail and passenger rail, and land use change is well documented in the material related to transit oriented development (TOD), for most communities a majority of their transit service will be bus-based. Bus-based transit has only been marginally integrated into land use planning and the development process because it is often seen as temporary.

Prominent and permanent strategies for moving toward a bus-based, transit supportive community include improving the pedestrian environment, passenger amenities, customer information and demand

5 American Public Transportation Association, Public Transportation Ridership Up In 2005, Media Advisory, April 4, 2006

Sustainable Community Development Code Beta version 1.5 Page 1 of 6

<table>
<thead>
<tr>
<th>Transit Service Level</th>
<th>Minimum Residential Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Bus Service</td>
<td>4 Dwelling Units/Acre</td>
</tr>
<tr>
<td>(once an hour or longer)</td>
<td></td>
</tr>
<tr>
<td>Intermediate Bus Service (two to three times an hour)</td>
<td>7</td>
</tr>
<tr>
<td>Frequent Bus Service (more than three times an hour)</td>
<td>15</td>
</tr>
<tr>
<td>Light Rail</td>
<td>9</td>
</tr>
<tr>
<td>Rapid Rail</td>
<td>12</td>
</tr>
<tr>
<td>Commuter Rail</td>
<td>2</td>
</tr>
</tbody>
</table>

8 Shapiro, Robert J. et al., Conserving Energy and Preserving the Environment: The Role of Public Transportation, July 2002
10 Litman, Todd, Evaluating Public Transit Benefits and Costs, Victoria Transport Policy Institute, 2006
11 Campaign for Efficient Passenger Transportation, Dollars and Sense: The Economic Case for Public Transportation in America, June 1997
management measures like parking. Additionally, changing land use and implementing operational improvements to maintain or increase transit speeds are essential to the development of a bus-based transit system.

In addition to good pedestrian design, density and mixed-use development support pedestrians and transit use. The standard guidelines are shown in the table below:

Communities can also invest in passenger amenities, including features that increase the security, comfort and certainty of the transit patron. These commonly include fully accessible bus stops, lighting, shelters, seating and route information but can now include real time information on bus arrival times and bus location. Such improvements have a documented positive effect on passenger satisfaction and attraction, and are things that can be required of developers through the local development review process.

Finally, communities can include ongoing requirements and programs for transportation demand management. Transportation demand management (TDM) is a program of specific strategies that promote more efficient use of the existing transportation system by influencing travel behavior in terms of the time, route or mode selected for a given trip. TDM strategies manage the demand placed on the transportation system by increasing travel choices, encouraging the use of alternate modes such as carpooling, vanpooling, public transit, bicycling, walking, and teleworking. Increasing the prevalence of these transit options reduces the incentives to use single-occupant vehicles.

While a variety of TDM strategies can be applied and included in the development review process, managed and paid parking has been shown to have the greatest effect on land development and transit use. Donald Shoup provides the definitive analysis of the effects of free parking and has thoroughly documented that the trend of excessive parking requirements, which are almost universally required by local governments. The minimum parking requirements contained in most zoning codes are based on a shaky foundation of limited, misinterpreted data and are the single biggest obstacle to creating a pedestrian and transit supportive environment. Even in transit poor environments, the simple strategy of parking cash out that allows the employee to choose to buy parking or keep the cash, results in at least an 11 percent mode shift away from the SOV.14 While politically difficult, the careful modification of parking requirements and pricing as part of a comprehensive TDM program in bus-served corridors is the surest and most significant change that a local community can undertake to support transit.

GOALS
- Increased transit usage by increasing population within the trip shed of transit service and increasing density and mix of uses
- Eliminate barriers to transit use such as excessive parking requirements and poor pedestrian and bicycle access to transit facilities
- Promote incentives to increase transit use such as transit fare free zones, reduced impact fees, reduced parking requirements
- Enact standards that will result in Increase in pedestrian, bike and transit mode share

IMPLICATIONS OF NOT ADDRESSING THE ISSUE
- Without an increased modal share of public transit to reduce vehicle miles traveled (VMT), we will be unable to success fully reduce GHG
- We will be unable to successfully address the social injustice concerns for the thirty percent of Americans who do not drive an automobile
- American cities will continue to sprawl in an unsustainable fashion as rail expansion and transit oriented development will only be able to accommodate a relatively small proportion of future population growth
- Continued dependence on fossil fuels will further hasten the transition to a renewable energy economy

POTENTIAL SUSTAINABILITY MEASURES:
- Percent of population within the trip shed of transit service, defined by transit type and service levels. For example, 80% of employees and dwelling units will be located within a half mile of a transit stop
- Increase in pedestrian, bike and transit mode share within the transit service area, for both work and non-work trips
- Increase in density and mix of uses within TODs and transit service corridors
- Percentage of those living in TODs and transit corridors that use transit
- Percent of managed parking within major destinations, and ultimately within the transit service area
- Improvement in pedestrian facilities LOS. For example, all parcels within a quarter mile of a transit stop should be served by pedestrian facilities operating at Level of Service C or better

12 Shoup, Donald. The High Cost of Free Parking, Planners Press, 2005
13 Shoup, Donald. The Trouble with Minimum Parking Requirements, Transportation Research Park A 33, p. 549-574. Pergamon, 1999
Sustainable Community Development Code Framework

PUBLIC TRANSIT

KEY STATISTICS:

- Over past 20 years, the U.S. has consumed about a quarter of the world’s petroleum production with the transportation sector consuming sixty-eight percent of that.27
- Since 2005, for the first time in nearly a century, national transit ridership has increased faster than the increase in VMT. Since 1995, transit ridership is up 25.1 percent compared to a 22.5 percent increase in VMT. 28 The current use of public transportation reduces U.S. gasoline consumption by 1.4 billion gallons each year or almost 4 million gallons a day29 compared to a total U.S. daily consumption of about 59 million gallons and reduces carbon emissions by 37 million metric tons annually.30 Record transit ridership was recorded in the second quarter of 2008 with an increase of 5.2%.31
- All modes of transit are far safer than personal vehicles in terms of fatalities per million miles of travel. Depending on vehicle type, transit is 26 to 79 times safer than auto travel32, resulting in an estimated 190,000 fewer deaths, injuries and accidents annually with $2 billion to $5 billion in safety benefits, based on 1994 data.33
- Transit will only attract discretionary travelers if travel time, cost, comfort and safety are comparable or better than automobile travel. Waiting times and transfers have particularly high costs but these can be reduced by high frequency service and improved traveler information.34 Experience in Boulder, Colorado shows that transit frequencies of 10 minutes or less are perceived as ‘schedule free’ and that a frequent schedule is a primary desire of choice riders.35
- Depending on their level of implementation, operational improvements and Bus Rapid Transit service have resulted in a thirty to two hundred percent increase in transit ridership36, and there is growing evidence that the permanent investment in these bus based transit facilities can produce the kind of real estate investment that results from rail transit.37
- Transit use is strongly supported by Transportation Demand Management efforts, particularly managed parking. Even in transit poor environments, the simple strategy of parking cash out, allowing the employee to choose to buy parking or keep the cash, results in at least a 11 percent mode shift away from the SOV.38 In Boulder, Colorado, paid parking in the downtown and University activity center is a major contributor to increasing alternative mode share by a factor of two to six times over Boulder employees as a whole.39 Free parking is huge subsidy to SOV use and the requirements for excessive parking are generally the largest impact fee imposed on new development.40 Transit operations are poorly integrated into land use planning or ignored. Bus transit elements are not often considered when planning land developments. One survey revealed that many transit agencies are frustrated by the lack of impact that they have on land development plans.41

<table>
<thead>
<tr>
<th>ACHIEVEMENT LEVELS (Note: Higher Levels Generally Incorporate Actions of Lower Levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronze (Good)</td>
</tr>
<tr>
<td>Remove Obstacles</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

18 American Public Transportation Association, Public Transportation Ridership Up In 2005, Media Advisory, April 4, 2006
23 Campaign for Efficient Passenger Transportation, Dollars and Sense: The Economic Case for Public Transportation in America, June 1997
26 Shoup, Donald. Evaluating the Effects of Parking Cash Out: Eight Case Studies, prepared for the California Air Resources Board, 1997
27 National Research Center, Boulder Valley Transportation Survey: Comparison of Survey Results, prepared for the city of Boulder, 2005
Sustainable Community Development Code Framework

PUBLIC TRANSIT

<table>
<thead>
<tr>
<th>City of Boulder, CO, Transit Village Plan</th>
<th>Create Incentives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Provide enhanced transit information at locations throughout the community</td>
</tr>
<tr>
<td></td>
<td>• Reduce impact fees for transit-oriented development</td>
</tr>
<tr>
<td></td>
<td>• Create a transit fare free zone for the downtown or other major activity centers</td>
</tr>
</tbody>
</table>

Enact Standards

<table>
<thead>
<tr>
<th>Bronze (Good)</th>
<th>Silver (Better)</th>
<th>Gold (Best)</th>
<th>References/Commentary</th>
<th>Code Examples/Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>For developments producing an established threshold of trips, require transit stop enhancements such as weather protection, system information, bicycle parking and lifetime maintenance guarantees</td>
<td>Require that buildings front the street with visible and accessible entrances serving pedestrians and transit patrons (see Pedestrian Mobility Systems Framework Section)</td>
<td>Include an ongoing TDM program in development review requirements, including continued funding and monitoring of progress</td>
<td>Shoup, Donald. (2005). The High Cost of Free Parking. Chicago: American Planning Association.</td>
<td></td>
</tr>
<tr>
<td>Require a high quality pedestrian design environment within major destinations and in the transit service area</td>
<td>Add on-street parking to bring activity to the street and define the pedestrian space. On street parking is essential to supporting business entrances fronting the street (see Parking Framework Section)</td>
<td>Establish parking maximums and unbundled parking requirements in transit overlay zones</td>
<td>Litman, Todd. (2006). Smart Transportation Investments II, Reevaluating the Role of Public Transit for Improving Urban Transportation. Victoria Transportation Policy Institute. Available online. Retrieved January 11, 2011.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. Green Building Council. LEED ND. See Credit 8 Street Network. Available online. Retrieved January 11, 2011.</td>
</tr>
</tbody>
</table>

Sustainable Community Development Code Beta version 1.5

Page 4 of 6
PUBLIC TRANSIT

- Require a complete and connected grid of streets at a pedestrian oriented scale of 300-400 foot block faces; alternatively, establish a maximum block perimeter of, for example, 1260 feet.
- Alternatively, achieve a street grid density of greater than 30 (centerline miles/square mile).
- For blocks greater than 660 feet in length, require a pedestrian and bicycle mid-block connection.
- Increase density and housing choices in transit zones.
- Include transit level of service in the traffic impact assessment required through the development review process.

- Implement transit overlay zones within high service transit corridors to incentivize transit supportive development (see Incentives section).
- Specify minimum densities or height requirements in select areas in the immediate transit zone.
- Parking at major destinations with high levels of multimodal access.

- City of Boulder, CO, Transit Village Area Plan. This richly detailed plan provides very clear guidance for future development, including enhanced bus stops and ways for mitigating the impact of park-n-ride lots. Available online. Retrieved January 11, 2011.
Strategic Success Factors
Regulatory tools must be grounded in solid comprehensive policy planning and accompanied by competent administration and supportive programs.

Planning Policy
- Include public transit policy in the comprehensive plan and transportation plan
- Plan to ensure that adequate land is available for transit support facilities
- Include transit agencies in all relevant development review processes
- Incorporate mobility oriented policies in all transit and transportation planning policy efforts

Programs & Administration
- Support transit promotions such as fare free days or free transit service for special events
- Target promotions for transit based on research and values that resonate in your community
- Create or support a subsidized transit pass program allowing businesses and neighborhoods to buy annual passes in bulk
- Create a community transit pass program providing an annual transit pass to all residents and employees in the community
- Create comprehensive and sustainable transportation demand management (TDM) programs as part of transit overlay zones that manage parking and promote walking, biking and transit use
- Create a dialogue between city planners and city transit organizations to help plan transit stops and sites most likely to benefit from TOD
- Work with transit providers to ensure frequent, high quality service and implement improvements in travel time and reliability
- Capital investments can also be made to maintain or enhance bus-based transit service. These operational improvements are intended to either improve bus travel times to increase competitiveness with the auto, or to maintain travel times to preserve the frequency of service without needing to add additional vehicles. Techniques that can be implemented by a local jurisdiction include:
 - Dedicated bus lanes or bus/bike lanes that remove the bus from congestion
 - Signal priority/preemption which gives the bus priority through signalized intersections
 - Queue jump lanes allowing the bus to move to the front of the queue at signalized intersections
 - Improved passenger loading facilities to reduce stop dwell time such as level boarding platforms or prepaid fare facilities